
NASA/CR-97-206274

ICASE Report No. 97-66

,NNIVERSARY

Complexity of Kronecker Operations on Sparse

Matrices with Applications to the Solution
of Markov Models

Peter Buchholz, Gianfranco Ciardo, Susanna Donatelli, and Peter Kemper

December 1997

The NASA STI Program Off'we... in Profile

has been dedicated

anautics and space
tific and Technical

a Office plays a key
ntain this

)ffice is operated by
the lead center for

hnical information.

)ffice provides

)atabase, the

autical and space

['he Program Office
al mechanism for

,f its research and

ese results are

NASA STI Report

following report

ATION. Reports of

•major significant
resent the results

include extensive

,sis. Includes

ant scientific and

mation deemed

fence value. NASA

iewed formal

having less

manuscript

phic

ANDUM.

findings that are

lized interest,

ts, working
Lesthat contain

es not contain

RT. Scientific and

s,SA-sponsored

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA' s mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa.gov/STI-

homepage.html

• Email your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at

(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information

800 Elkridge Landing Road

Linthicum Heights, MD 21090-2934

Since its founding, NASt
to the advancement of ael

science. The NASA Scie_

Information (STI) Progra

part in helping NASA m_

important role.

The NASA STI Program

Langley Research Center
NASA's scientific and te_

The NASA STI Program
access to the NASA STI]

largest collection of aeror
science STI in the world.

is also NASA's institutioJ

disseminating the results,

development activities. "I_

published by NASA in th,

Series, which includes th_

types:

TECHNICAL PUBLI(

completed research or

phase of research that I

of NASA programs anq
data or theoretical anal

compilations of signifi,
technical data and info

to be of continuing ref_

counter-part or peer-re"

professional papers, bu

stringent limitations on

length and extent of gr_

presentations.

TECHNICAL MEMO]

Scientific and technica_

preliminary or of speci,

e.g., quick release repo

papers, and bibliograpl
minimal annotation. Dc

extensive analysis.

CONTRACTOR REP(

technical findings by N

contractors and grantee

NASA/CR-97-206274

ICASE Report No. 97-66

th
_NNIVERSARY

Complexity of Kronecker Operations on Sparse

Matrices with Applications to Solution
of Markov Models

Peter Buchholz (Universitat Dortmund, Germany)

Gianfranco Ciardo (College of William and Mary)

Susanna Donatelli (Universita di Torino, Italy)

Peter Kemper (Universitat Dortmund, Germany)

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

December 1997

Prepared for Langley Research Center
under Contracts NAS 1-97046 & NAS1-19480

III IIIIII IIIIlllllll

Availablefrom the following:

NASA Center for AeroSpaccInfo_ation (CAS!)= .::_.:::Natio..,._,_n_Tcch_c=_=_fo_atio n Se_i_:_S) _i: .:,=<_, _-_ ;=_::_ i_:_

800 Elkridge Landing Road 5285 Port Royal Road

Linthicum Heights, MD 21090-2934 Springfield, VA 22161-2171

(301) 621-0390 (703) 487-4650

COMPLEXITY OF KRONECKER OPERATIONS ON SPARSE MATRICES WITH

APPLICATIONS TO THE SOLUTION OF I_IARKOV MODELS

PETER BUCHHOLZ*, GIANFRANCO CIARDO?, SUSANNA DONATELLI t, AND PETER KEMPER §

Abstract. We present a systematic discussion of algorithms to multiply a vector by a matrix expressed as

the Kronecker product of sparse matrices, extending previous work in a unified notational framework. Then,

we use our results to define new algorithms for the solution of large structured Markov models. In addition

to a comprehensive overview of existing approaches, we give new results with respect to: (1) managing

certain types of state-dependent behavior without incurring extra cost; (2) supporting both Jacobi-style

and Gauss-Seidel-style methods by appropriate multiplication algorithms; (3) speeding up algorithms that

consider probability vectors of size equal to the "actual" state space instead of the "potential" state space.

Key words. Kronecker algebra, Markov chains, vector-matrix multiplication

Subject classification. Computer Science

1. Introduction. Continuous time Markov chains (CTMCs) are an established technique to analyze

the performance, reliability, or performability of dynamic systems from a wide range of application areas.

CTMCs are usually specified in a high-level modeling formalism, then a software tool is employed to generate

the state space and generator matrix of the underlying CTMC and compute the steady-state probability-

vector, from which most quantities of interest can be obtained as a weighted sum by using "reward rates"

as weights [17].

Although the mapping of a high-level model onto the CTMC and the computation of the steady-state

distribution are conceptually simple, practical problems arise due to the enormous size of CTMCs modeling

realistic systems. Sophisticated generation and analysis algorithms are required in practice.

In this paper, we consider the steady state solution of large ergodic CTMCs, that is, the computation

of the vector _-, where _'i is the steady-state probability of state i. However, our contributions can also be

used to improve the generation of the state space [8, 21] and other types of analysis such as the computation

of the expected time spent in transient states up to absorption in absorbing CTMCs and transient analysis

of arbitrary CTMCs [6].

Ir E _lTI is the solution of the system of linear equations

(1.1) _r- Q = 0 subject to 7r • 1 T = 1,

where Q is the generator matrix and 7" is the set of states of the CTMC.

Direct solution methods such as the well-known Gaussian elimination are not applicable, since their

fill-in results in excessive memory requirements. Iterative techniques based on sparse storage schemes for Q

are more appropriate, but even they are memory-bound when applied to realistic examples. Virtual memory

*Informatik IV, Universit_t Dortmund, D-44221 Dortmund, Germany (emaih buchholz@Is4.informatik.uni-dortmund.de).

t Dept. of Computer Science, College of William and Mary, Williamsburg, VA 23187-87951 USA (email: ciardoOcs.wrn, edu).

This research was partially supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-

19480 while this author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA

Langley Research Center, Hampton, VA 23681.

Dipaxtimento di Informatica, Universith di Torino, Corso Svizzera 185, 10149 Torino, Italy (email: susiOdi.unito.it).

§Informatik IV, Universit_t Dortmund, D-44221 Dortmund, Germany (emaih kemper_}Is4.informatik.uni-dortmund.de).

Symbol Definition or properties Meaning

M_ k-th submodel

nk nk > 2 Number of local states for Mk

n_ rI_=t nk Number of potential states for M[t,_]

n n_ Number of overall potential states

fik n/nk = n_ -1 • nK+l Number of potential states when Mk is ignored

-k, T k {0,..., nk - 1} Potential, actual local state space (s. s.) for M

_k T I x T 2 x ..- x T k Potential s. s. for M[1,k]

_', 7" _- ----_K, 7" C 7" Potential and actual overall s. s.

7"1k {i[1,k] : 3i[k+l,K], i[LK] • "T} Projection of the actual s. s. T on M[1,k]

Tk(i[1,k_l]) {ik : i11,_l E T_k} Actual s. s. for Mk when Mt is in state it, V1 < I < k

_ : _" --, {0,..., IT] - 1, null} Position of a state in lexicographic order

_, 7r Vi E T _ = 7r_(_) Steady state probability vector

(_, Q, 1_, R Q = (_-,_-, R -= I_-,T Infinitesimal generator, transition rate matrix

l_, h k/i • T h, --- h_t_) Expected holding time vector
TABLE 2.1

Symbols used in the paper

is of little help, since access timcs to virtual memory are too long to allow an efficient implementation of

iterative solution techniques (although [11] reports some encouraging results).

Recently, solution techniques for CTMCs have been developed that compute lr without generating and

storing Q explicitly. The idea is to represent Q as a sum of Kronecker products of smaller matrices that

result from a high-level model structured into submodels. A general framcwork for this idea is described in

Sect. 4. This covers several high-level formalisms to describe models in a compositional way [13, 14, 18, 24].

Solution methods exploiting a Kronecker structure are iterative and they differ from conventional iter-

ation techniques in how they perform the required vector-matrix multiplications. Earlier approaches [24]

employed the slowly-converging Power method, used densc storage schemes for the submodel matrices, and

computed the solution using the "potential" state space, a (possibly much larger) superset of the actually

reachable states. This resulted in a limited applicability, since these approaches become inefficient for models

where submodel matrices are quite sparse, the actual state space is much smaller than the potential state

space, or the Power method requires too many iterations.

More recent publications [18, 9] began to overcome these limitations, but there is still no systematic

approach to fully exploit the potential of Kronecker-based solution techniques. In this paper, we present a

family of solution techniques using sparse storage for the submodel matrices and itcration vectors of the size

of the actual state space, and we consider both the Jacobi and the Ganss-Seidel methods. Additionally, we

compare the complexity of the Kronecker-based vector-matrix multiplication algorithms we present, both

theoretically and by means of a realistic example.

In the next section, we define the notation used. Sect. 3 contains a framework for the description of

Markov models and Sect. 4 considers composed Markov models and the corresponding Kronecker structure

of the generator matrix. Sect. 5 presents and analyzes different algorithms to multiply a vector by a matrix

represented as a Kronecker product, using a running example. Sect. 6 describes iterative solution approaches

that use these multiplication algorithms to compute the steady-state solution of a CTMC.

2. Notation. Table 2.1 summarizes the symbols used in this paper. Except for the set of real numbers,

_, all sets are denoted by upper-case calligraphic letters (e.g., ,4); row vectors and matrices are denoted by

lower- and upper-case bold letters, respectively (e.g., x, A); their entries are indexed starting from 0 and

are denoted by subscripts (e.g., x_, A_,y); a set of indices can be used instead of a single index, for example,

Ax,y denotes the submatrix of A corresponding to set of rows X and the set of columns y. We also denote

families of like-quantities with subscripts (for scalars) or superscripts (for sets, vectors and matrices) (e.g.,

xi or x i) and use a shorthand "range" notation to indicate sequences of them (e.g., x[1,_] = xl,..., xn)

y[A] denotes the number of nonzeros in matrix A. 0x×y and lx×y denote matrices with x rows and

y columns, having all entries equal 0 or 1, respectively, while Ix denotes the identity matrix of size x x x;

the dimensions of these matrices are omitted if clear from the context. Given a vector x, diag(x) is a

square matrix having vector x on the diagonal and zero elsewhere. Given an n x n matrix A, rowsum(A) =

diag(A, ln×l) is a matrix having the diagonal equal to the sums of the entries on each row of A, and zero

elsewhere.

K AkWe recall the definition of the Kronecker product A = _k=l of K square matrices A k E j_k×nk.

Let n_ = YI_=_ nk, n -- n K, and fik = n/nk. If we assume a mixed-base numbering scheme, the tuple/[1,g]

corresponds to the number (... ((ll)n2+12)n3 ")nK+Ig g _C"" = _k=l lknk+l (letting ngK+l = 1), and vice versa.

If we assume that i[1,g] and J[1,K] are the mixed-based representation of i and j, respectively, the generic

element of A E/R n×n is

__ A 1 . 2 g(2.1) Ai,j = Aitl.KI,jII._I -- ,1,3a "A_2,Y_ "'" AiK,J_

K A kThe Kronecker sum (_k=l is defined in terms of Kronecker products, as

K K K

k=l k=l k=l

We are interested in algorithms that exploit sparsity. For the Kronecker product, the number of nonzeros
K K

is r/[i_k=l A k] r/[Ak]. For Kronecker sum,= 1-_k=l the diagonal entries in the matrices A k might result in
K

merged entries on the diagonal of A, thus we can only bound the number of nonzeros, rl[_k=l A k] <

_-]_g=l (r/[A _] "hk). This bound is achieved iff at most one matrix A k contains nonzero diagonal entries. On

the other hand, if all diagonal elements of the matrices A k are positive (or all are negative), g_7[{_k=1 Ak] =

•nk) - (K - 1).n. As a consequence,the Kroneckersum of K > 2 matrices (with > 1) can
never be a full matrix.

3. Description and solution of a Markov model. A formal high-level model having an underlying

CTMC specifies a stochastic automaton of some sort. Instead of assuming a specific high-level formalism

such as Stochastic Petri Nets [5], Queueing Networks [26], or Stochastic Process Algebra [16], we consider a

generic framework where a model is a tuple:

M = (T, C, ie, active, new, rate, weight)

• T is the set of potential states.

• E is the set of possible events.

• i° E 7" is the initial state.

• active : E × 7" --* {True, False}.

• new: _ x 7- --* Tt_) {null}; new(e,i) = null iff active(e,i) = False.

• rate:E--*lR +.

• weight : £ x T --* K_+.

If an event e is active in state i (that is, if active(e, i) = True) and if new(e, i) = j, we say that state

j is reachable in one step from i. The transitive and reflexive closure of this relation is called reachability.

Using the reachability relation, we can build the set T _ T of states reachable from the initial state i0,

called the (actual) state space of M. An event e active in state i has an exponentially-distributed duration

with parameter rate(e) • weight(e, i): Since the duration of the events is exponentially distributed, and the

next state depends only on the current one (by definition of function new), M defines a CTMC.

T can be generated using a state-space exploration algorithm, essentially a breadth-first search of the

graph implicitly defined by the model, starting from i0; assuming that 7" is finite, the search terminates.

Then, we can define a function • : T --* {0,..., 17"1- 1, null), with _(i) -- null iff i _ 7" and such that the

restriction of qJ to 7" is a bijection.

With the indirect iterative solution methods for the steady-state solution of the CTMC, it is convenient

to write the infinitesimal generator Q E _V_I_-I×ITIas

Q = R - rowsum(R) = R - diag(h) -1,

where R E ._lTlxVrt is the transition rate matrix and h is the vector of expected holding times. 1_ differs

from Q only in its diagonal, which is zero, while h contains the inverse of the negative of the diagonal of Q.

R can be generated at the same time as T, or in a second pass, once ITI is known, since we can then use an

efficient sparse row-wise or column-wise format [23]; h is instead stored as a full vector.

In the following, we assume that 1_ is irreducible, that is, the CTMC is ergodic.

4. Model composition and Kronecker description of Q. We consider structured models de-

scribed as the parallel composition of a set of stochastic automaton submodels. Formally, a stochastic

automaton M ---- (_r, £, i °, active, new, rate, weight) is the parallel composition of the K models Mk =

(_rk, Sk, iOk,active k, new k, rate k, weightk), 1 <_ k < K, iff:

• _- = 31 x ... x _r K. A state of the composed model is the tuple describing the local state of the K

submodels: i = ill,K].
K £k.• £ ----Uk=l Let £s = {e : 3h _ k : e E $h [q £k} be the set of "synchronizing" events common to

two or more submodels. The remaining events can be partitioned into K sets of "local events", one

for each submodel: £Lk = £k \ £S.

A submodel Mk has no influence on an event e ¢ £k, nor is it influenced by such events. Hence, we

extend the local functions active k, weight k, new k, and rate k to the entire set of events C as follows.

For any e ¢_$ k and for any local state ik E _/-k:

- activek(e, ik) = True (neutral element for logical conjunction).

- weightk(e, ik) ----1 (neutral element for multiplication).

- new _ (e, ik) ----ik (neutral operation for state changes).

- ratek(e) = c_ (neutral element for the minimum).

• i 0 -- i o
-- [1,K]"

K

• active(e, i[1,K]) = A activek(e' ik). An event local to Mk is active iff it is active in Mk; a synchro-
k=l

nizing event e is active iff it is active in all submodels where it is defined.

null if 3k, activek(e, ik) ----False where jk = newk(e, ik).• new(e,i[1,Kl) = J[1,K] otherwise

K

• weight(e, i[1,K]) = H weightk(e'ik)"

k=l

• rate(e) ----l<k<K{ratek(e)}min . The choice of using the minimum is just one possibility; for the solution

algorithms we present, any function will do. For example, we could instead assign the rate on the

global model, independently of the values ratek(e).

In the presence of multiple synchronizations, T can be a strict superset of T, and, in this case, some

local states in _k might be unreachable. Thus, we define the "actual local" state spaces as the projection of

T on the k-th component:

T k = (ik : 3jE1,K t _ T, jk ik} c_ _rk.

We can then redefine _-k as T k, and assume from now on that the two are identical. This improves both

memory requirements and execution time, at the cost of exploring T once.

The compositional definition of M allows a structured description of the transition rate matrix based

on the following "local" matrices:

• W k (e) is a nk xnk matrix defined as

W_d (e_,_ ,,= [weightk(e, ik) ifactivek(e, ik)=Trueandjk=newk(e, ik)
[0 otherwise

• R k are the local transition rate matrices describing the effect of local events:

a = rate(e).
eEE_

Using related frameworks, [3, 9, 14, 24, 25] have shown that both the transition rate matrix R and

the infinitesimal generator Q underlying M can be expressed as the restrictions to the reachable states of

appropriate matrices, R = I_-,T and Q = (_T,_r, defined as Kronecker expressions On the Wk(e) and R k

matrices. The expression for R is:

(4.1)
K K

R: E rate(e)'@ wk(e)+ _ Rk
eEEs k=l k=l

synchronizing events local events

The expression for 1_ is analogous but we omit it because, in the following, we assume that only l_ is kept

in Kronecker form, and that h, or its "potential" version 1:1,is stored explicitly as a full vector. Alternatively,

we could save memory by using a Kronecker description for h, at the cost of additional execution time.

4.1. A small example. To illustrate the use of Kronecker operators for the description of R, we

consider first a simple example with K = 2 models M1 and M2. A more complex running example is

introduced in the next section.

The definition of M1 and M2 is given in Table 4.1, the extension of functions to the entire set C is

omitted for readability. The composed model M has a state space _r = {(0, 0), (0, 1), (1, 0), (1, 1)} and its

events are g = Es U£_ UC_, where g_ = {el} is the only local event in M1, £L2 = {e2} is the only local event

in M2, and £8 = {ca} is the only synchronizing event. If we define rate(el) = 6, rate(e2) = 5, rate(ca) = 4,

we obtain the following matrices (zero entries are omitted for readability):

model MI: T I = {0, 1} $1 = {el, ez}

active 1 (., .) = False except

activel(el,0) = True newX(ex,O) = 1 weightl(el,0) -- 0.6

activel(e3, 1) ----True newi(e3, 1) = 0 weightl(e3, 1) -- 0.4

model M2: T 2 = {0, i} _2 = {e2, e3}

active2(., .) = False except

active_(e2, 1) ----True new2(e2, 1) = 0 weight2(e2, 1) = 0.7

active2(e3,0) = True new2(e3,0) = 1 weight2(e3,0) = 0.5
TABLE 4.1

Definition of the submodels for our small example

0 1 0 1 0 1 0 1

t 001
resulting in

(0, 0)

4. (o,1)
(1,0)

(1,1)

2 2

I_ = 4. @Wk(e3) + GR k -- 4-(Wl(e3) ®W2(e3)) + (R 1 @I2 +I2 ®R 2) ----
k=l k=l

(0,0) (0,1) (1,0) (1,1)

0.4.0.5

((0,0) (0, 1) (0,0) (0, 1) (1,0) (1, 1)

+

(1,0) (1, 1)

3.6

3.6 3.5
+

3.5

4.2. A running example. We now describe the running example used throughout the rest of the

paper to obtain timing results. It models a flexible manufacturing system (FMS) with three machine centers

(cl, c2, and c3) and four types of parts being processed. Fig. 4.1 depicts it as a fork-join queuing network,

with machines as queues and parts as customer classes (chains). We assume exponentially distributed service

times for simplicity, c3 can process up to three parts in parallel, c2 up to two, and cl only one.

A part of type A accesses c3 with high priority and, after service completion, it is either rescheduled for

processing at c3 or joined with a part of type B for processing at c2. A part of type B accesses cl with high

priority and, after service completion, it is either rescheduled for processing at cl or joined with a part of

type A for processing at c2. The joint processing of parts of type A and B occurs with high priority on c2

and, after service completion, it yields a product which is delivered and replaced by its original raw parts,

to keep a constant stock of material in the system.

The FMS also produces a second product with low priority, to reduce idle time on machines. The

low-priority product is processed in the same manner as the high-priority product, but from parts of type

C (instead of A) and D (instead of B). The only difference is that processing of the corresponding parts

can only take place on a machine that has no high-priority work to be performed (we assume a preemptive

• partA
pmB

© pmc
0 l,mO
• partA andB

[] part C and D

fork join

FIG. 4.1. Multiclass Queueing Network for our running example

Type of matrix e k = H k = L

wk(e) low1 1,158 584

wk(e) lOW 2 2,259 135

Wk(e) low3 2,214 584

R k local 11,844 1,438
TABLE 4.2

Number of nonzeros using the first decomposition.

priority policy). The parameters nA, riB, no, and nD give the number of parts of each type present in the

system.

We start with decomposing the model into two submodels according to the priority of parts. Submodel

H describes the processing that machines cl, c2, and c3 perform on the high-priority parts A and B, including

their joint processing; submodel L is analogous, for the low-priority parts C and D.

The synchronizing events are £s = {low1, low2, lows}, representing the low-priority parts using the three

machines. For nA =rib = 4, andnc = no = 3weobtain [TH[= 2,394, tTL{ = 652, and IT[= IT[=

1,560,888. Table 4.2 gives the number of nonzeros for the matrices involved in the Kronecker description of

R

If matrix entries are stored in double precision, the Kronecker description of R requires 388,800 bytes.

The explicit sparse-storage representation for R would instead require about 126 MB in single precision or

180 MB in double precision. Obviously, the Kronecker representation of R is extremely space-efficient in

this case.

5. Complexity of vector-matrix multiplication. If A is a n x n matrix stored explicitly using sparse

storage, the complexity of computing the product x- A is O (r/[A]). Storing A in a full two-dimensional

data structure is inefficient for the type of problems we consider; in any case, it is equivalent to assuming

that _?[A] = n 2 from a complexity point of view, so we restrict ourselves to sparse storage from now on. If

A is instead stored implicitly as the Kronecker product of K matrices A k E _n_×,_, k E {1,..., K}, also

stored in sparse row-wise or column-wise format, as appropriate, a direct application of Eq. 2.1 requires K

operations to obtain each matrix entry. If each Ai,j is computed only once for each pair (i, j) and only

nonzero Ai,j elements are computed, the complexity of computing x. A becomes O (K. r_[A]). In the next

S'hff/(in:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

15.

17.

18.

19.

20.

21.

n[x,K], All'K]; inout: _, _,);

nlelt _-- 1;

nright _ n K ;

for k = 1 to K

base _-- 0;

jump _-- nk " nright;

if k k p I then

for block = 0 to nteft - 1

for offset = 0 to nright -- 1

index _ base + offset;

forh=0tonk- 1

7"h _ Xinde_;

index *-- index + nright;

z r _ w.. Ak;

index _-- base + offset;

forh=0ton_- 1

:i',,,d_= '-- z;,;

index *-- index + nright;

base _ base + jump;

_-9;

nleft _ nleft " nk ;

nright _-- nright /nk q-1 ;

Sh_-(in: x, nl_It, nk, nright, Ak; inout: y);

1. base *-- 0;

2. jump *-- nk'nright;

3. for block = 0 to nteft - 1

4. for offset = 0 to nr,gnt - 1

5. index *-- base + offset;

6. for h = 0 to nk - 1

7. zh +-- Xindez;

8. index _-- index + nright;

9. z' *-- z. Ak;

10. index _-- base + offset;

11. forh=0tonk-1

12. 9,,d_ _-- _',.d_ +Z_;

13. index *-- index + nr=ght;

14. base *-- base + jump;

FIG. 5.1. Vector-matrix multiplication using perfect shuffles.

section, we recall an algorithm that achieves a better complexity by exploiting the inherent structure of a

Kronecker product.

Before doing so, however, we observe that the matrices involved in the Kronecker products of Eq. 4.1

can have very few elements. In our particular application, the matrices A k are eithcr the K matrices Wk(e)

for a given e 6 £, or they are all the identity except for one of them being equal R k, for a given k. This last

case arises from rewriting the Kronecker sum appearing in Eq. (4.1) into a (regular) sum of of Kronecker

products, as explained in Sect. 2. Hence, we consider three levels of sparsity, according to the average number

a = rl[Ak]/nk of nonzeros per row or column in the matrices A k (in the following we assume the same c_ for

all matrices Ak), where A = ®Ak:

hypersparse: a << 1 _ r/[A] << n (only a few nonzeros, most rows and columns are empty).

ultrasparse: a _ 1 _ rl[A] _ n (each row or column has one nonzero, on average).

sparse: _ >> 1 =_ rl[A] = n. ag >> n (any other sparse matrix).

We focus on the case of sparse or ultrasparse, that is, we assume that r/[A k] _ nk, for all k = 1,..., K.

Truly hypersparse matrices can occur in our Kronecker approach, clearly extreme cases might be best man-

aged by explicitly storing a list of triplets (i,j, Ai,j), one for each nonzero in A.

5.1. The shuffle algorithm. The first algorithm for the analysis of structured Markov chains was

presented in [24]. Fig. 5.1 shows algorithms Shl_, to compute _ *-- _¢" <Yk=l_c_gA k, and Shift +, to compute

_r _-- _ • I,,_-_ ® A k ® In_+_ (from now on, the suffix "+" denotes the version for the simpler case of a

product where all matrices are the identity except one).

O_

2

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

I I I

ordinary better

I t t I

Sh]J_ better

1 I 1 I I I. , I

2 3 4 5 6 7 8 9 10
K

FIG. 5.2. Comparing Sh_ with ordinary multiplication in the (K, a) plane.

Shffi considers the matrices A k sequentially, exploiting the equality [10]:

K K

(5.1) @ Ak-- H S_._,n_+_)"(Ink ® Ak) • S(n[,n[+,),
k=l k=l

where S(a,b) e {0, 1) a'b×"'b is the matrix describing an (a, b) perfect shuffle permutation:

1 ifj=(imoda).b+(idiva)(S(a'b))id= 0 otherwise

Therefore, a vector-matrix multiplication can be performed using K vector permutations and K mul-

tiplications of the type x • (Ink ® Ak). Matrix Ink ® A k has a peculiar structure: it is simply matrix A k

repeated fik times over the diagonal, hence, the cost of the k-th multiplication is O(ik • _[Ak]), while the

permutation costs can be neglected, since they can be incorporated into the algorithm.

The computation of the shuffle permutation is encoded in steps 10-13 and 15-18. The complexity of Shffi

(derived in [4] as a generalization of the full storage case described in [26, Theorem 9.1]) can be rewritten

as:

k=l k=l nk /

Hence, Shffi is faster than a multiplication using explicit storage iff

n . K . _ < n . _ g ¢==_ a > K _-f.

Fig. 5.2 illustrates the regions where Sh_ or ordinary multiplication perform better, according to the values

of K (which is small in practical modeling applications) and c_.

Sh]JY" is the specialization of Shfff when A k ¢ I is true for exactly one k, and it is called with its

parameters nt_f_ and n_igh_ set to n k-1 and nkg+l, respectively (Fig. 5.1). Its complexity is

O (ilk" _][Ak]) = O (n. a).

K AkThe resulting complexity of computing :_ *-- £ + 5- (_k=l using Shffl + is then

O ilk'_[A k] =O nE =O(n.K.a).
k=l _=_ nk]

RwEl(in" i[1,K],:/:, n[1,K], A[I'K]; inout: :_)
1

1. for each jl s.t. Ail,j 1 > 0

2. Jl .-- jl;
3. al *-- A_1,_1;

2
4. for each j2 s.t. Ai_,j 2 > 0

5. j_ +-- Ji'nz+j2;
2 .

6. a2 _-- al " Ai2j 2,

7.

8.

9.

I0.

K
for each jK s.t. AIK,jK > 0

irk +'-- ilK-- 1 " nK -_ jK ;

K
aK *'-- GK-1 ' AiK,JK,

_r., +-- _', +x'aK;
3 K 3 K

Rw(in: _,nI1,K],A[X'KI; inout: $')

1. for i = i[x,K] = O to n --1

2. RwEl(i, _, nix,K1, A II'K1, _);

RwEl+(in: nk, TI,K.+.I, i;, ik, $:, X, Ak: inout: _,)

1. for each jk s.t. AS . > 0tk,Jk

2. j' .- (i;. _ + j_). _f+_ + i+;
3. _j, .- _rj,+x.A_,k,_',

Rw+(in: 5, k-1 Kn 1 ,nk,nk+l,Ak; inout: _')

1. for i =--(i-_,ik,i +) = 0 to n-- 1

.... + _ Ak,_));2. RwEl+(nk,n_+l,zk ,zk,z k , i,

Fro. 5.3. Vector-matrix multiplication by rows.

5.2. A straightforward algorithm using sparse storage. A direct application of Eq. (2.1) results

in the algorithm Rw in Fig. 5.3, which performs the computation _r _- _r + _. A and requires sparse row-wise

format for the matrices A k.

Procedure RwEl computes the contribution of a single entry P-i to all the entries of _, as _ _-- Sr +

_q • Ai,/r. The K nested for statements in procedure RwEl are required to compute element Ai,j according

to its definition in Eq. (2.1). Some of the computation needed to obtain Ai,j is reused for other elements

A. k . is reached Hk=l _[Ah ,7-hi = O(a k)of matrix A. On a given call to RwEl, statement ak _'- ak-1 • *k,.n,

times. Rw calls 12wEl n times, hence its complexity is

(Kk___x) { O(n.K)=O(K._I[A]) ultrasparse(5.2) O n- ak = O(n. a K) = O(r/[A]) sparse

In other words, the multiplicationsneeded to compute a2 through aK-1 are effectivelyamortized only if

a>>l.

The analogous algorithm Cl and procedure ClEf, for multiplication by columns, are omitted. Each call

to CIEl computes a single entry _j of _, as the inner product _ • A_-,j, where j is equal to J[1,K] in our

mixed-base notation. Cl has the same complexity as Rw but requires sparse column-wise storage for the

matrices A k. However, Rw and Cl differ in an important aspect: the multiplication performed by CIEl

requires only one scalar accumulator, while RwEl uses the vector _ itself as an accumulator. If we follow

the good numerical practice of using higher precision for accumulators, Rw has larger memory requirements

than Cl.

The simplified multiplication algorithm Rw +, used to compute Kronecker sums, is also shown in Fig. 5.3.

Its complexity is

0 (n. r/[Ak----_]nk/_= 0 (n. a).

K A kThe resulting complexity of computing _r _- _ + _ • _k=l using Rw + is then

10

Type of matrix

Wk(e)
Wk(e)
wk(e)
Wk(e)
Wk(e)
Wk(e)

a k

e k=l k=2 k=3 k=4

low3 120 -- 42 --

low2 105 -- 21 --

low1 -- 35 -- 30

joinAB 56 35 -- --

fOrkAB 56 35 --- --

joined -- -- 21 15

forkeD -- -- 21 15

local 280 140 42 30

TABLE 5.1

Number of nonzeros using the second decomposition.

5.3. Considering only a subsets of states. The decomposition considered so far for our running

example satisfies 7- -- T. This is not the case in a second decomposition we now introduce, obtained by

further refining the submodels H and L. For the high-priority parts, we define submodels 1, describing the

processing of parts of type A and their joint processing with parts of type B, and 2, describing the processing

of parts of type B on machine cl. For the low-priority parts, we define analogous submodels 3 and 4.

The synchronizing events are then

Es = {/owl, low2, low3, join AB, fOr k AB, joinc D, f orkC D }

where the "join" and !'fork" events correspond to the start and end of assembling parts A with B, or C with

D, respectively.

For nA ---- nB = 4, and nc = no -- 3, the cardinalities of the local state spaces are [TI[= 126, 1T 2] =

70,]T3[= 56, and]T4t = 35. The potential state space is now much larger, [T[= 17,287,200, while [T[=

1,560,888, as before, since we are modeling the same system. Table 5.1 gives the number of nonzeros for thc

matrices involved in the Kronecker description of R (missing entries indicate identity matrices, which do not

need to be stored explicitly).

The matrices for the Kronecker description of R now use a truly negligible amount of memory, 29,148

bytes, but Sh_, Rw, and Cl need a large amount of space to allocate vectors of length _', even if we axe

really interested only in the elements corresponding to T.

This observation motivates us to consider methods that compute _'T = _'T + xT • AT,T, where T _

is the actual state space and _'T and xT are stored using arrays y and x, of size ITI. Specifically, for i E T,

xi is stored in position I -- _(i) of x: xi = xz. To restrict ourselves to reachable states only, we need to:

• Generate T. Efficient algorithms for the generation of T can be found in [8, 21]

• Ensure that only AT,T contributes to the value of y. If A is one of the matrices whose sum

constitutes 1_, then A_,j = 0 whenever i E T and j ¢_T, that is, starting from a reachable state,

only other reachable states can be reached. In matrix form, this implies that R_r,_-k_- -- 0 [9, 18].

The reverse is not true: if i ¢_T and j E T, A_,j can be positive, that is, reachablc states can bc

reached from unreachable states.

• Find an efficient way to compute _ : _r --, {0,..., ITI - 1, null}. We use a logarithmic search in T,

and show how the overhead is reduced by using an appropriate data structure to store T.

Algorithm RwSbl in Fig. 5.4 modifies Rw, by accessing only elements corresponding to reachable states.

We omit the algorithm RwSb + to compute Kronecker sums, since an analogous discussion as for Rw +

11

RwElSbl(in: ill,K1, X, A[z'K]; inout: y)

1. for each jl s.t. A_I,j 1 > 0
1 .

2. az *-- Ai_,jl,
2

3. for each j2 s.t. A,2,j_ > 0
2

4. a2 _--- al-A,2,j2,

K
5. for each jK s.t. A_K,j K > 0

K
6. aK *-- aK-1 "A_K,jK;

7. J *-- _(j[1,r]);

8. yj +'-- yd-l-x'aK;

RwSbl(in: x,A{I'K],T; inout: y)

1. for each i[z,g] E T

2. I *-- @(i[z,K]);

3. RwElSbl(i[1,K],xI,A[l'_,y);

Fro. 5.4. Vector-matrix multiplication by rows for a subset T of the states.

applies. Line 1 in RwSbl selects only elements of T among those in 3. This requires no additional overhead

as long as the elements of T can be accessed sequentially according to the order _. The assignment in line

7 of RwEISbl, however, requires finding the index J = _s(j[1,g]) of the clement J[1,g] in the array y. If

the computation of • uses a binary search, a multiplicative overhead factor O(log IT[) is encountered in the

innermost for-loop. The overall complexity of RwSbl is then derived analogously to that of Rw. On a given
/c

call to RwElSbl, statement ak *- ak-1. Akk,jk is reached l_h=l _/[Ahh,Th] = O(ak) times, and statement

J .- kTs(j[1,K]) is reached T/[A_I_,K],T] = O(c_ K) times. RwSB1 calls RwEISbz once for each ilz,K] E T,

hence its complexity is

((_-_)){ O([Tl'(K+l°glT[))ultrasparse(5.3) O IT ! • a k + a K. log IT t = O (IT[. a K. log [TI) sparse
k=l

Since K < log ITI in practical modeling s!tuations, we can conclud e that RwSbl has a log ITI overhead
With respect to ordinary multiplication, regardless of the matrix sparsity.

In a multiplication by columns, the situation is potentially worse. CISbx, the version analogous to

RwSbx, must avoid the "spurious" entries in Aq-\T,T. In ClEISbl, the index I _ q/(i[1,K]) computed by

the binary search returns null if the "from" state ill,K] is not reachable. Hence, CIElSbx must test whether

I = null and, if so, ignore entry Ai[_,KI ,Jt_,Kj" The average cost of these binary searches is slightly longer than

for RwE1Sbl, since searching a state not in T represents a worst-case scenario, but, more importantly, the

complexity of CISbl must account for all searches performed, regardless of whether they are successful or

not. The number of such searches is equal to the number of nonzeros in the columns of A corresponding to

T, r/[Aq-,T], while only rJ[AT,T] searches are performed in RwSb_. The sparser Aq-\7- 7- is, the closer the

performance of ClSbl is to that of RwSbl, and the two complexities coincide when Aq-\7-,_- = 0 (this can

happen even when 7" D T).

5.4. Reducing the log ITt overhead. The multiplicative overhead log ITI in RwSbl and CISbx results

from a worst-case assumption that we must search in a set of size ITI to compute each value of _.

[19] discusses approaches to reduce this overhead, but the most effective solution appears to be obtained

by storing T using the multilevel data structure shown in Fig. 5.5 [8].

Before explaining this data structure, we introduce the following sets:

• _k __ T 1 × ... x T k = {0,...,nl - 1} × ..- x {0,...,nk - 1}, the projection of the potential state

space over the first k components.

• 7"1k = {i[Z,k] : 3i[k+l,K], i[1,g] E _r'}, the projection of the actual state space over the first k compo-

nents.

12

L. ll Jill
: local state

: pointer

• 2(_1(il),i2) -IP

000

I v01KIIIIIIlllllll li l l I i I I

"_" _K(*"_2(_l(il),i2)",iK)= _(i[1,K]) "_

]

FIG. 5.5. Storage scheme for computation of ffl in O(log ITI).

• Tk(i[1,k-1]) = {ik : i[1,k] C _k}, the local states for Mk that can occur when the local states for M1

through Mk-1 are il through ik-1, respectively.

In particular, T1K -- 7", T1K =- T, and we can define T1(i[1,01) simply as T 1.

In Fig. 5.5, the elements of the array at level k contain local states for submodel Mk. When searching

for a given state ill,K], we search first for il in the array at level 1, containing T 1. After finding il, we

follow its pointer to the array at level 2. The greyed-out portion of this array contains T2(il). We then

search for i2 in this portion, and so on, until we find the local state iK in the greyed-out portion of the last

array, corresponding to TK(i[1,K_I]). The displacement of this local state in the entire array at level K is

_(i[1,g]). If, at any level, we are unable to find ik, we can conclude that the state we are searching is not in

T, that is, ff2(i[1,K]) = null.

Since the arrays at levels 1 through K - 1 are usually small compared to the last level, and the array at

level K, of size ITI, can be compressed into Flog2 ngq. 17"Ibits, 7" can be stored in o(17"1 log2 rig) bits [8].

The real advantage of this data structure, however, is the amortization of the logarithmic searches. For

a given i[1,K], we compute _(i[1,K]) in K steps:

_/(i[1,K]) = _*/K(""" _/2(_/1(il), i2)"'', iK)'

When searching for a second state iil,K] such that ill,k] = ill,k], we can reuse the work in the first k of these

steps. In other words, if we saved the pointers identifying the greyed array for Tk+l(i[1,k]) at level k + 1

where we found ik+l, we can now start our search for zk+1'' in that portion, instead of starting all over at

level 1.

This results in algorithms RwSb2 and C1Sb2. Fig. 5.6 shows CISb2, since it is used in the solution

algorithm A-GSD of Sect. 6. The tests for Ik ¢ null for k < K are necessary because an event might be

inactive due to a submodel Mh with h > k, but there might not be a matching state for (_k(.]k-l,jk) at

level k already. This is possible not only for C1Sb2, but also for RwSb21. In addition, CISb2 still is affected

by nonzeros in Aft-,7-, as discussed in Sect. 5.3, requiring the test IK ¢ null in the innermost loop. The

analogous test is instead not needed in RwSb2.

1We thank A. S. Miner for pointing out this possibility and providing an example where it occurs.

13

ThecomplexityofCIEISb2 is now dominated by the searches at each level, since for each multiplication

at level k, a O(log nk) search is performed as well. On a given call to C1EISb2, statement Ik _- _Pk (Ik-1, ik)

[(Ah]) = O(ak) times. CISb2 calls ClE1Sb2 for each j[1,K] E T, hence itsis reached _/ _)k=l _-_-1 ×_'_,Jt,._]

complexity is

ultrasparse
(5,4) o 17-1" ak'l°gnk = O(ITl'_'k=ll°gnk)=O(]7-['l°gn)

k=l O (17"1"aK" log rig) sparse

(the simplification for the sparse case is correct provided that nN is at least comparable to nk, for any

k<K).

The complexity of RwSb2 is analogous, except that the amount of computation performed in CISb2 is

still worse than for RwSb2 because searches for unreachable states are still possible. The problem is now

reduced with respect to ClSbl, though, because entries in A_-\T,T are now discovered before reaching the

innermost loop, if ill,k] _ _k for some k < K.

Comparing Eq. (5.4) with Eq. (5.3), we conclude that RwSb2 and ClSb2 have better complexity in the

sparse case, since they can effectively amortize the logarithmic searches at each level only when the matrices

A k have multiple elements per row. However, in the ultrasparse case, they have an overhead of log n = log]_r t

instead of just log 17"1. This is due to the pessimistic assumption that a logarithmic search at level k requires

O(lognk) comparisons. If, for each k, all sets 7"k(i[1,k_l]) were of approximately the same size, then their

complexity in the ultrasparse case would be reduced to 0(17" I • log ITI), but this might not be the case in

practice. One factor not evidenced by the complexity expressions, though, is that, unlike RwSbl and ClSbl,

RwSb2 and CISb2 avoid reaching the innermost for-loop whenever a partial state is not reachable, so they

might actually perform better than RwSbl and CISbl even in the ultrasparse case.

RwSb_ and CISb + are the simplified algorithms for matrices arising from a Kronecker sum. Fig. 5.6

shows CISb +. On a given can, CIEISb + reaches statements Ik *- k_k(Ik-1, ik) and/h '-- _h(Ih-1, jh) for

k < h < K, with an overall cost of O Eh=k log nh , at most _[AT-k,jk] = O(a) times. ClSb + calls CIElSb +

once for each j[t,K] E 7-, hence its complexity is

0 17-1"a" lognh .
h=k

(The resulting complexity of computing y *-- y + x • _k=l _-,T

0 [Tl.a._lognh =0 17-l.a._-_k.lognk =O(lT"[.a'K'logn).
k=l h=k k=l

Thus, the logarithmic search overhead decreases from submodel M1, where no amortization occurs, to M/<,

where only an overhead log nK is encountered, but the overall overhead remains log n, since the number of

K /kknonzeros in _)k=l is approximately 17"1•_- K.

5.5. Interleaving rows and columns. RwSb2 and CISb2 fail to amortize the logarithmic searches

in the case of ultrasparse matrices because the K nested for-loops in RwElSb2 and ClElSb2 consider only

the entries on a given row or column of A, respectively. If A is ultrasparse, only one entry is found, and no

amortization occurs.

To further improve the complexity, we need to consider the elements of A in a different order, interleaving

the K nested for-loops in RwElSbz, or CIElSb2, with those implicitly defined by the single for-loop in RwSb2,

or ClSb2.

14

CIElSb2(in: j[1,N], x, All'K]; inout: y)

1. for each il s.t. A_ x,h > 0

2. 11 '-- _1(il);

3. if I1 _ null then

4. al _ A_Ij1;
2

5. for each i2 s,t, Ai2j2 > 0

6. I2 _-- qJ2(I1,i2);

7. if 12 ¢ null then
2

8. a2 ¢-- al '-_i2,j2,

K
g. for each iK s.C. AiK,jr > 0

I0, IK *"- _K(IN-I,iK);

11. if IN _ null then
K .

12. aK (-- aK-1 • A;,_,jK,

13. y _ y+XIK'aK;

ClSb2(in: x, AII'K],T; inout: y)

I. for each j[1,N]E T

2. J _ _(JI1,N]);

3. CIEISb2 (JI1.N], x, A [I'N] , y_);

RwSb3(in: x, A[a'Kl, T; inout: y)

1. for each il E T 1

2. 11 _- _a(h);
3. for each jl s.C. A_I,jl > 0

4. ./1 *-- X_l(jl);

5. if Jz _ null then

6. al _ A_IjI;

7. for each i2 E T2(il)

8. /2 _- g22(I1,i2);
2

9. for each j2 s.C. A,_d 2 > 0

i0. J2 *- @2(Jl,j2);

11. if ,/2 _ null then
2 .

12. a2 _- al' Ai,2,j2,

13. for each iN E TK(iI1,N-zl)

14. Ig _ _N(IN--I,iN);
K

15. for each jK s.C. AiK,jK > 0

16. JN '--- _K(JK-I,jK);

17. if JK :_ null then
K

18. aN *"- aN-z" A_KjK,

19. YJK *- Y_K + XrK • aN;

ClElSb+(in: j[1,K], X, k, Ak; inout: y)

z. I___ .- ___(..._(_l(jl),/_) j_-l);
k

2. for each ik s.t. A,kj_ > 0

3. Ik _- _k(Ik-_,ik);

4. if I_ _t null then

5.

6.

7,

8.

g.

Ik+l ("- _k+l([k,j_+l);

if I_+_ _ null then

IN _ _N(IK-_,jN);

if IN _t null then

y 4"-"- y -[- XIK _le ,3k ;

CISb+(in: x,k, Ak,T; inout: y)

1. for each Ji_,K] E T

2. J _-- k_(jix,gl);

3. ClElSb + (Ji_,N], x, k, A _, y_);

RwSb+(in: x,k,Ak,T; inout:y)

i. for each iB.__ H E "7"1k-1

2. ___ ,- __1(..._2(_,(il),i_).

3. for each i_, E Tk(i[1,k-a])

4. Ik _-- q_k(Ik-_,i_);

Ak - >05. for each jk s.t. '_,_k

_. & _ %(I_-_,j_);
7. for each ik+l E _Fk+l(i[1,k l)

8. I_+_ _- _+_(I_,ik+_);

. &+ _ V_+I(&,i_+I);

10.

11.

12.

13.

,i,-_);

FIG. 5.6. A better vector-matrix multiplication

for each is E TI':(i[z,K_I])

IN _- glN(IK-l,iN);

JN _- i_K(,]g--l,iK);

k
YJN _-- YJK -_- XlK " Ai_ok ,

for a subset of the states.

We employ this idea to derive algorithm RwSb3, shown in Fig. 5.6 and used in the solution algorithm A-

JCB of Sect. 6. The statements Ik _-- k_k(Ik--1, ik) do not require a search, since all states ik • Tk(i[1,k-_l)

are enumerated sequentially in the for statement. A search is performed only to obtain J_ ,---- _2k(Jk--l,jk)

and, even if this is a multiplication by rows, the tests Jk _ null are necessary, as already discussed for RwSB2

and ClSb2.

1Statement Jk _ ff2k(Jk--l,jk)is performed r/ [.(@_=1 Ah)TI_ TI__lxTk : O([_lkt "Ctk)timcs, hence

15

Procedure (a) mult (a) CPU (a) wall (b) mult (b) CPU (b) wall

Shl_

Rw

Cl

RwSbl , RwSb +

ClSbl , ClSbl

RwSb2, RwSb +

c_s_, cns_

RwSb3, RwSb +

22,638,318 54.9 178.2

18,832,668 38.6 43.4

18,832,668 54.1 54.2

18,832,668 156.5 157.5

18,832,668 191.4 191.9

17,987,499 56.3 57.2

17,987,499 91.1 91.6

15,714,589 43.0 45.2

m m __

__ m m

243,941,600 1,488.2 3,325.2

23,199,652 219.8 220.2

23,199,652 259.8 260.5

20,980,675 60.3 61.8

20,980,675 106.7 106.9

15,960,012 24.4 24.6
TABLE 5.2

Computational effort for vector-matrix multiplication.

the complexity of RwSb3 is:

(assuming that [T1K- 11 << 17"1). Thus, finally, we achieve a smaller log n_ overhead with respect to ordinary

multiplication, regardless of the type of sparsity.

RwSb + in Fig. 5.6 is the simplified vector-matrix multiplication algorithm for matrices arising from a

Kronecker sum. Also in this case the complexity is dominated by the innermost for-loop, where the O(log nK)

search to compute JK _ _K (JK-1, iK) is performed r/[Aq-,T] = O(ITI-a) times. The complexity of RwSb +

is then

O(]TI.a. lognK)

(K Ak) using RwSb + isregardless of k, and the resulting complexity of computing y _- y + x- _k=l T3-

0 (K-17"t. c_- lognK),

only a log nK overhead with respect to ordinary multiplication.

The complexity of CISb3 and ClSb + is the same as that of RwSb3 and RwSb +, although spurious

entries are still a disadvantage. Unfortunately, though, CISb3, unlike ClSbl and CISb2, does not compute

the cntries of y in order. This property prevents us from interleaving rows and column indices to reduce the

logarithmic overhead if we want to use a Gauss-Seidel type iteration in our solution algorithm.

5.6. Comparing the multiplication algorithms. Fig. 5.7 compares the theoretical complexities of

Sh_ and Rw or Col, and of ordinary multiplication, assuming 7" = T and K = 4. While it is clear that Shffi

is much superior for large values of a, the matrices Wk(e) in typical modeling applications are ultrasparse

or even hypersparse. In the region around a = 1, Shffi and Rw have the same performance, K times worse

than ordinary multiplication. Indeed, Rw outperforms Shffi when a < 1, since it may recognize that an

entire row of A is zero before reaching the innermost for-loop.

On the other hand, Shift + and Rw + have exactly the same complexity as ordinary multiplication. In

other words, when computing x. A where A is the Kronecker product of K matrices, all of them equal to an

identity matrix except one, exploiting the Kronecker structure of A does not result in additional overhead

(since the generic entry A,,j of A is obtained without performing any multiplication), nor in better efficiency

16

1000

100

operations 10

n
1 ... "'i'" ordinary

(log scale) 0.1 Ii"l "'"" Shffl

Rw_

0.01

0.001 i i i i i _ J i l i i I i

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
ot

FIG. 5.7. Comparing the complexity of 5"hfft, Rw, and ordinary multiplication (K = 4).

(since no partial result can be reused the way Shffl does). The same holds for the complexity of computing
K

_-)" + x " _]_k=l Ak, except that ordinary multiplication is faster if there are many merged diagonal

entries in _L1 Ak. In our application, the diagonals of the matrices R k are zero, so this does not happen.

These observations are confirmed by our running example. Table 5.2 gives the number of floating

point multiplications performed by the algorithms we introduced and their execution times to compute

. 1, or xT" 15_T,7-, where R is given by Eq. (4.1). Columns labeled (a) consider the decomposition into

two components, where T = T and 1_ consists of three Kronecker products and one Kronecker sum, while

columns labeled (b) refer to the second decomposition into four components, where [31 >> ITI and R consists

of seven Kronecker products and one Kronecker sum. The Kronecker sum in (a) contains more local events

and more nonzero entries than the one in (b). We list both CPU and elapsed (wall) time in seconds, for a

Sun SPARCstation 4 under SunOS 4.1.4, with a 85 Mttz CPU, 64 MB main memory, and virtual memory

limited to 398 MB.

In the first decomposition, the matrices Wk(e) are ultrasparse or hypersparse and, as predicted by

our theoretical observations for a < 1, Rw outperforms Shffl, but all Kronecker-based algorithms are less

computationally efficient than a conventional multiplication where R is stored in sparse format, which would

only require _?[R] = 13,439,073 multiplications.

This suggests that, in practice, the real advantage of Kronecker-based methods lies exclusively in their

large memory savings.

In the second decomposition, r/[A_r,T] = r/[AT,-/-], hence one should expect no significant difference

between row and column algorithms. However, as discussed in the following section, we use column algorithms

only to allow a Gauss-Seidel type of iteration, where entries of the new iterate of the steady-state probability

vector must be computed sequentially. Hence, in a multiplication by columns, we consider one state at a

time, and all the events that lead to it, while, in a multiplication by row, we are free to consider one event

at a time, and all the states it can affect. The latter way avoids having to switch between events, hence the

row algorithms perform better.

However, the column variants use less memory because the operand vector is directly overwritten by

the results. This is the reason why, for the second decomposition, C/can still execute while Shift and Rw

fail due to excessive memory requirements. However, Cl heavily relies on virtual memory, as the difference

between CPU and elapsed times indicates. Cl considers 139,172,250 matrix entries in 15_, although only

17

_[R] = 13,439,073 are relevant.

Shffl, Rw, and C/are obviously inadequate when 1_1>> ITI; only algorithms based on T run acceptably

fast for the second decomposition. The results indicate that their overhead is effectively reduced from RwSbl

to RwSb2 to RwSb3, and from ClSbx to CISb2. Clearly, there is no reason ever to use RwSbl or ClSbl; we

introduced them only as a stepping stone to the better algorithms.

In summary, RwSb3 is a fast and robust algorithm, almost as fast as Rw even when IT[= [_rl; it

uses only O(ITI) memory, and makes full use of the multilevel data structure for the storage of T. For

multiplication by columns, instead, Cl is considerably faster than ClSb2 when ITI =]TI, but CISb2 is far

superior when ITI >> ITI, and it uses the least amount of memory in all cases.

It should also be noted that RwSb3 is faster with the second decomposition than with the first one, even

if it performs slightly more operations. This is due to its log nK overhead: in the first decomposition, nK

is much larger than in the second one (2394 vs. 126); indeed, 43.0/24.4 = 1.76 _ log 2394/log 126 = 1.61.

Clearly, the model decomposition can greatly affect the overall solution time; how to reach an optimal choice

is a topic for future research•

We conclude this section by observing that we described our algorithms using K nested loops for il-

lustration purposes only. Since K is model-dependent, a recursive implementation is required• To improve

performance, we implemented this recursion iteratively with dynamically-allocated arrays of size K [20] .

6. Model solution algorithms. We now return to the problem of solving a Markov model, that is,

Eq. (1.1). In practical modeling problems, Q is very large and indirect iterative numerical methods such as

Power, Jacobi, or Gauss-Seidel are normally employed for the solution. In all cases, starting from a guess _r(°),

which does not have to be the initial probability vector if the CTMC is ergodic, successive approximations

w(m) are computed, until convergence is reached.

In terms of the actual state space, the iterations we consider are:

• Power method: Ir ('_+1) _-- _r (m) • (I + Q. h*), where h* is a value slightly larger than the maximum

expected sojourn time in any state, maxo<1<IT-t {hi}. Element-wise, the Power method corresponds

to:

(6.1) VJ, {0,1,...IT[- 1}, _j--(re+l)4--qr(jrn)+ (_0_.I<[T] 7r(Im)'QI'J) "h'"

The Power method is guaranteed to converge in theory, but it is often extremely slow.

• Jacobi method: _.(,,+1) +_ zr(m). R- diag(h). Element-wise, the Jacobi method corresponds to:

(6.2) VJE{0,1, ..'T'-I}, -(re+l) +- (lr_ m))
• nj _ • RI,j . hj.

O<I<ITI,I_J

The Jacobi method does not have guaranteed convergence, but it is usually faster than the Power

method in practice. The Jacobi and Power methods coincide when all the sojourn times have the

same value and, in the Power method, h* is set to this value instead of a value slightly larger.

• Gauss-Seidel method: w (re+x) _-- _r(m).L'(diag(h)-l-U) -1 for forward Gauss-Seidel, or _r (re+l) _--

_r (m). U. (diag(h) -1 -L) -1 for backward Gauss-Seidel, where L and U are strictly lower and upper

triangular matrices satisfying L + U = R. Element-wise, (forward) Gauss-Seidel corresponds to:

/ \

(6.3) VJ E {0,1,... 17"1-1}, _(m+D ,_._ [X-"_ Ir ('_+1), ,)
+ J< <lzI j/ •

18

Gauss-Seidel does not have guaranteed convergence either, but it is guaranteed to be faster than

the :lacobi method (if they converge), so it is considered the best among thesc three methods. Its

convergence rate, however, is affected by the order in which the states are considered.

Relaxation can be used to accelerate convergence [27]. We do not investigate this possibility, since it

does not affect our discussion. Other iterative solution techniques, such as projection methods, have also

been applied successfully for the analysis of Kronecker-based models. However, these techniques have higher

memory requirements and, in any case, they too perform vector-matrix multiplications, so our discussion

could be extended to them. For a detailed analysis of numerical techniques for the solution of Markov chains,

see [26].

6.1. Alternative solution approaches. The first choice in a Kronecker-based solution is whether to

use data structures of size I:TI or I:TI. Initial efforts have adopted the former approach [13, 14, 25], using

a probability vector _" E _r'/'l initialized so that only states in 7" have nonzero probability (e.g., the initial

state has probability one). This is required because, even if we assume that the CTMC is ergodic, that is,

:T is a single recurrent class, T might instead contain multiple recurrent classes. By ensuring that all the

probability mass is in the class corresponding to T at the beginning of the iterations, we guarantee that this

is true upon convergence as well. Entries _'_ = 0 correspond to unreachable states and have no effect on the

solution.

Previous approaches, however, employ only the Power or Jacobi methods because they restrict themselves

to accessing the matrix 1_ by rows. As pointed out in Sect. 5, they compute the entries of a new iterate

lr (re+l) incrementally, using the values of the previous iterate _r(m)_ so that double-precision vectors should

be used.

(re+l) (re+l)
The use of Causs-Seidel requires instead computing lr(1,...x_l} before _r_ . This can be accomplished

if we have access to R by columns, that is, if we can efficiently obtain all the nonzero entries l_,j, for a

given j E 7" and any i E T. We have shown how to do this in Sect. 5. An additional advantage is that

single-precision vectors can be used in this case.

We now examine the timing requirements of the various solution algorithms, according to whether they:

• Use the perfect shuffle approach, SH, or our multiplication procedures.

• Store vectors the size of the potential, P, or actual, A, state space.

• Perform a Jacobi (JCB) or Gauss-Seidel (GSD) iteration.

We indicate the resulting algorithms as SH-JCB [4, 15], P-JCB, A-JCB, P-GSD, and A-GSD. In the original

SAN paper [24] introducing the Kronecker-based solution approach, the Power method is used instead of

Jacobi. Thus, we present first the Jacobi method using function Shill to realize the iteration. Fig. 6.1 and

6.2 list only the statements within the main iteration of the numerical method, that is, the computation of

a new iterate given the current one.

We also compare the space used by the various algorithms, ignoring the memory needed to store the

matrices R k and Wk(e), which are necessary in all the algorithms we consider, and are in any case negligible

compared to the storage for the required vectors. For simplicity, we assume that rate(e) for a synchronizing

event e is equal one, and ignore it from now on; if its value were not one, we could simply incorporate it into

exactly one of the matrices W k (e), for some k (in a practical implementation, it is best to choose a k for

which W k(e) # I).

An alternative to avoid storing R explicitly is simply to generate it "on-the-fly" at every iteration,

directly from the high-model specification. While a Jacobi-style iteration is most natural, Deavours and

Sanders [12] have shown how to use a variant of Gauss-Seidel in conjunction with an on-the-fly approach

19

SH-JCB(in: _r °zd, Iz[1,K], R [I'K] , W [I'K] (_), l_l; out: 7r near)

1. W"_' _-- O;

2. _.a_=2 ___ O;

3. foreach e E _s

4. _ra_=1 _-- _r°ld;

5. Shffl(n[1,Kl, W[l'K](e), _ra"*xl, @'_*x_);

6. _rn_w _-- _r"_w + _ra_'_2;

7. for k= 1toN

^ old k--1 K k _rneW);8. Shl_-(rr ,n 1 ,n_,nk+l,R ,

9. for i = 0 to n K- 1

10. if _r,.... > 0 then

11. _ ,-- _-_'_. hi;

FIG. 6.1. Algorithm SH-JCB.

for a set of modeling formalisms including GSPNs, stochastic activity networks, and stochastic reward nets.

A similar idea is also in [22]. However, the time complexity of this approach is at least as high as that of

the algorithms we present, and events requiring no time (e.g., immediate transitions in GSPNs [1, 2]) causc

additional overhead, since entire paths, not single events, must be explored in this case to generate a single

entry, so we do not consider it further.

6.2. Algorithm SH-JCB. The algorithm SH-JCB in Fig. 6.1 implements the Jacobi method using

Shffl and Shff_ + for the vector-matrix multiplications. The time complexity of one SH-JCB iteration is

independent of the submodel ordering:

())(6.4) o ,7JRk]+ .
e:Wk(e)7_I

Five vectors of length n are needed: one for the expected holding times, 1_, one each for the previous and

the new iteration vectors, _r °t'_ and _.,_ew, plus two auxiliary vectors used when calling procedure SHOT, #a,_l

and _.a_2. Additionally, two vector z and z _ are needed in the procedures Sh.07 and Sh.07 +, but they are only

of size maxk(nk), much smaller than n. Of these, _.n_,_ _._,_2, and z _ should be stored in double-precision,

because they are used as accumulators.

6.3. Algorithm P-JCB. P-JCB is the simplest iteration, it uses the Rw and Rw + vector-matrix

multiplications presented in Fig. 5.3 and, just as algorithm SH-JCB, it uses vectors of length n. Its complexity

depends on the order of the components:

eEEs k=l h=I

P-JCB requires three veetors vectors of size n: _.ola, _.new and 1_; only _.ne,_ is used to accumulate

sums.

6.4. Algorithm A-JCB. A-JCB has the same convergence behavior of SH-JCB and P-JCB, but uses

data structures of size IT[by employing the RwSb3 and RwSb-_ vector-matrix multiplications presented in

Fig. 5.6. The complexity of one A-JCB iteration is

0((_ (Kk_=Rk)T,T] + _s_[(Kk_= W'(e))T,T])'IOgnK) •

2O

P-JOB(in: fi.old, n[1,K] ' R[1,K] W[1,t<] (e), 1_; out: _.r, ew)

1. _.new *-- 0;

2. foreach e E £s

3. nwffr o_d,nil,K], WP,K] (e), _"_);
4. for k= l to K

5. Rw+(ir°ta, n k-1 n K Rk /r,_).1 _ k_nk+l'

6. for i -- i[I,K] = 0 to n_ -- 1

7. if ¢r_ ew > 0 then

8. _i _-- wi • i;

A-JCB(in: zr °ld, R [I'K] , W [I'K] (£), T, h; out: lr "_'_)

1. 7r new _-- 0;

2. foreach e E gs

3. RwSb3Or°'d, w[a'_:](e), T, lr"_);

4. for k=l toK

5. RwSb+(rr°td, k, Rk,T, lr'_°);

6. for I=0to[T[-I

7. 7r__= *- zr_ _'' hi;

P-GSD(in: n[1,KI,R[I'K],W[I'K](g),I_; inout: _-)

1. for j _= J[1,K] = 0 to nlK -- 1

2, #j *- 0;

3. foreach e E £s

4. CIEI(j[1,K], _r, n[x,K], W [I'K] (e), _'j);

5. fork=ltoK

n K _-,k-1 . nk-1 . K .6. ClEl+(nk, k+l,_._m=l jr n . rn+l,Jk,_"_rn=k+lJr n . nm+lK, 7_,Rk,_.j);

7. if _j > 0 then

8. _r; ,-- ¢r_.l_j;

A-GSD(in: RiX'K],w[I'_'I(£),T, h; inout: rr)

1. for each J[1,K] E "T

2. J *-- _(j[1,K]);
3. 7['J _-- 0;

4. foreach e E gs

5. CZElSb2(Jt_,m,rr, WI_'m (e), rrj);
6. for k=ltoK

7. CIEISb+ (J[I,KI, _r, k, R k , _ra);

8. 7rj +-- _j.hj;

FIG. 6.2. Algorithms P-JOB, A-JOB, P-GSD, and A-GSD.

If the number of merged entries in the above expression is negligible, this simplifies to

lognK),

that is, just a log nK factor over the complexity of a traditional Jaeobi iteration wherc R is stored explicitly.

The memory requirements of A-JCB are the same as for P-JCB, except that vectors are now of size [T[, not
n.

6.5. Algorithm P-GSD. With the Gauss-Seidel method, the old and the new iterate can be stored into

a single vector. If R were described by a single Kronecker product K(_k=l Ak, P-GSD would be achieved by

the simple call Cl(¢r, n[1,K], A [l'K]'t, _), followed by the same elementwise multiplication of # by the expected

21

Procedure iteration holding time auxiliary search data

vectors vector vectors structure

SH-JCB

P-JCB

A-JCB

P-GSD

A-GSD

n-(S+D) n-S n-(S+D) --

n. (S+D) n-S -- --

[Tl. (S+D) iT[.S -- _ IT I. L

n-S n.S -- --

5% s 5% s -- _ 17"1.L
TABLE 6.1

Memory requirements for model solution algorithms.

holding times, as performed by P-JCB. However, R consists of the sum of several Kronecker products, which

can be processed sequentially in a Jacobi iteration, but not in a Gauss-Seidel iteration, since we must now

complete the computation of the new ¢ri before starting that of @i+1- Hence, P-GSD must call the functions

CIEl and CIEl + directly, not through Cl or C/+.

The complexity of P-G,.qD is then the same as that of P-JCB. This makes it a better choice, since Gauss-

Seidel has better convergence than Jacobi, and only one vector, @, is required in addition to the expected

holding times In. Furthermore, we can store _" in single-precision.

6.6. Algorithm A-GSD. The comments made for P-GSD apply to A-GSD as well. As observed at

the end of Sect. 5, the interleaving or rows and columns of ClSb3 and ClSb + cannot be used, so ClSb2

and CISb + must be used instead, whose amortization of the logarithmic search is less effective. This points

out a surprising tradeoff between A-JCB, which has slower convergence but a smaller overhead, log nK, and

A-GSD, which has better numerical convergence but higher overhead, possibly as high as log n.

The complexity of A-GSD is

® Rk)T_-XxTk'T_ h=k eeEx \h=l / T_-lxTk,T1 k

k=l

6.7. Comparing the model solution algorithms. Table 6.1 summarizes the memory requirements

for the solution algorithms we considered, expressed in the units S and D, for a single- or double-precision

floating point number (usually 4 and 8 bytes, respectively), and L, for a local state of MK (usually 1 or 2

bytes). The actual memory usage for our running example is instead in Table 6.2, for decompositions (a)

and (b). Column "vectors" lists the memory (in bytes) for the iteration vectors and h; column "extra" for

auxiliary vectors or search data structures.

The timing results are in Table 6.3. We performed iterations using the absolute convergence criterion

[Ilr °ld - lrneWl[_ < I0 -s, and a relaxation factor of 0.95.

As already anticipated in Table 5.2, algorithms SH-JCB and P-JCB fail due to insufficient memory with

the second decomposition, while P-GSD could be run, but with an unacceptable amount of overhead (we

estimate it would require about six days of CPU time).

We observe that the two decompositions result in different state orderings, which in turn affect the

convergence of A-GSD. Hence, 200 iterations are required for the first decomposition, but only 150 for the

second one (convergence is tested every 10 iterations).

22

Procedure

8H-JCB

P-JCB

A-JCB

P-GSD

A-GSD

(a) vectors (a) extra

24,974,208 18,730,656

24,974,208

24,974,208 3,127,000

12,487,104

12,487,104 3,127,000

(b) vectors (b) extra

276,595,200 207,446,400

276,595,200

24,974,208 3,804,700

138,297,600

12,487,104 3,804,700
TABLE 6.2

Memory requirements (in bytes) for our example.

Procedure (a) CPU (a) wall (a) (b) CPU (b) wall (b) iter

SH-JCB

P-JCB

A-JCB

P-GSD

A- GSD

20,327 65,940

14,292 16,067

15,928 16,725

10,822 10,841

18,236 18,337

iter

370

370

370

2OO

200 20,464

q __ __

10,022 10,054 370

21,218 150
TABLE 6.3

Execution times (seconds) and number of iterations for our example.

7. Conclusion. We have presented a comprehensive set of Kronecker-based matrix-vector multipli-

cation and solution algorithms for structured Markov models in a unified framework, which ignores the

peculiarities of specific modeling formalisms. Time and space complexities are given, with special attention

to the sparsity of involved matrices.

We have shown how the Kronecker-based solution of structured Markov models can be carried on with

smaller memory and execution complexity than previously proposed. This is achieved by exploiting the

sparsity of the matrices involved in the Kronecker operations, by considering the actual state space instead

of the potential state space (which can contain many unreachable states), by adopting a sophisticated data

structure to determine whether a state is reachable or not, and by performing vector-matrix multiplications

by rows or by columns, thus allowing the use of both Jacobi- and Gauss-Seidel-style methods.

Our results are not limited to steady-state solution of ergodic models. Indeed, the computation of the

cumulative sojourn time in the transient states up to absorption in an absorbing CTMC also requires the

solution of (nonhomogeneous) linear system, while the iteration performed by the Uniformization method

for the transient solution of a CTMC is essentially the same as that of the Power method.

The proposed algorithms have been implemented in SupGSPN [20] for the Petri net formalism; imple-

mentation of a more general software package fully supporting the state-dependent behavior we described

is under way [7]. The reduced memory requirements allows us to solve very large Markov models (over 10 r

states) on a modern workstation in a matter of hours.

REFERENCES

[1] M. AJMONE MARSAN, G. BALBO, AND G. CONTE, A class of Generalized Stochastic Petri Nets/or the

performance evaluation of multiprocessor systems, ACM Trans. Comp. Syst., 2 (1984), pp. 93 122.

[2] M. AJMONE MARSAN, G. BALBO, G. CONTE, S. DONATELLI, AND G. FRANCESCHINIS, Modelling

with generalized stochastic Petri nets, John Wiley _ Sons, 1995.

23

[3]P. BUCHHOLZ,Numerical solution methods based on structured descriptions of Markovian models, in

Computer performance evaluation, G. Balbo and G. Serazzi, eds., Elsevier Science Publishers B.V.

(North-Holland), 1991, pp. 251-267.

[4] --, A class of hierarchical queueing networks and their analysis, Queueing Systems., 15 (1994),

pp. 59-80.

[5] G. CHIOLA, On the structural and behavioral characterization of PIT nets, in Proc. 5th Int. Workshop

on Petri Nets and Performance Models (PNPM'93), Toulouse, France, Oct. 1993, IEEE Comp. Soc.

Press.

[6] G. CIARDO, A. BLAKEMORE, P. F. J. CHIMENTO, J. K. MUPPALA, AND K. S. TRIVEDI, Automated

generation and analysis of Markov reward models using Stochastic Reward Nets, in Linear Algebra,

Markov Chains, and Queueing Models, C. Meyer and R. J. Plemmons, eds., vol, 48 of IMA Volumes

in Mathematics and its Applications, Springer-Verlag, 1993, pp. 145-191.

[7] G. CIARDO AND A. S. MINER, SMART: Simulation and Markovian Analyzer for Reliability and Tim-

ing, in Proc. IEEE International Computer Performance and Dependability Symposium (IPDS'96),

Urbana-Champaign, IL, USA, Sept. 1996, IEEE Comp. Soc. Press, p. 60.

[8] --, Storage alternatives for large structured state spaces, in Proc. 9th Int. Conf. on Modelling Tech-

niques and Tools for Computer Performance Evaluation, R. Marie, B. Plateau, M. Calzarossa, and

G. Rubino, eds., LNCS 1245, Saint Malo, France, June 1997, Springer-Verlag, pp. 44--57.

[9] G. CIARDO AND M. TILGNER, On the use of Kronecker operators for the solution of generalized stochas-

tic Petri nets, ICASE Report 96-35, Institute for Computer Applications in Science and Engineering,

Hampton, VA, May 1996.

[10] M. DAVIO, Kronecker products and shuffle algebra, IEEE Trans. Comp., C-30 (1981), pp. 116 125.

Illl D. D. DEAVOURS AND W. H. SANDERS, An efficient disk-based tool for solving very large Markov

models, in Proc. 9th Int. Conf. on Modelling Techniques and Tools for Computer Performance

Evaluation, R. Marie, B. Plateau, M. Calzarossa, and G. Rubino, eds., LNCS 1245, Saint Malo,

France, June 1997, Springer-Verlag, pp. 58-71.

[12] --, "On-the-fly" solution techniques for stochastic Petri nets and extensions, in Proc. 7th Int. Work-

shop on Petri Nets and Performance Models (PNPM'97), Saint Malo, France, June 1997, IEEE

Comp. Soc. Press, pp. 132 141.

[13] S. DONATELLI, Super'posed Stochastic Automata: a class of stochastic Petri nets with parallel solution

and distributed state space, Perf. Eval., 18 (1993), pp. 21-26.

I141 _-, Superposed generalized stochastic Petri nets: definition and efficient solution, in Application

and Theory of Petri Nets 1994, Lecture Notes in Computer Science 815 (Proc. 15th Int. Conf. on

Applications and Theory of Petri Nets), R. Valette, ed., Zaragoza, Spain, June 1994, Springer-Verlag,

pp. 258-277.

[15] P. FERNANDES, B. PLATEAU, AND W. J. STEWART, Efficient descriptor-vector multiplication in

stochastic automata networks, Rapport Apache (LGI, LMC) 12, 1994. -

[16] U. HERZOG AND M. RETTELBACH, eds., Proc. of the 2nd Workshop on Process Algebra and Perfor-

mance Modetlin 9 (PAPM), Arbeitsberichte des IMMD 27 (4), 1994, IMMD, Universit/it Erlangen.

[17] R. A. HOWARD, Dynamic Probabilistic Systems, Volume II: Semi-Markov and Decision Processes, John

Wiley and Sons, 1971.

[18] P. KEMPER, Numerical analysis of superposed GSPNs, IEEE Trans. Softw. Eng., 22 (1996), pp. 615-628.

[19] _, Superposition of generalized stochastic Petri nets and its impact on performance analysis, PhD

24

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Publicreporting burdenfor thiscollectionoFinformation isestimatedto average1 hourper response,includingthe timefor reviewinginstructions,searchingexistingdata sources,
gathering and maintainingthe data needed,andcompletingand reviewingthe collection of information, Sendcomments re@rdingthisburdenestimateor anyother aspectof"this
collectionof information,includingsuggestionsForreducingthisburden,to WashingtonHeadquartersServices,Directoratefor InformationOperationsandReports,1215 JeRerson
DavisHiKhway,Suite1204, Arlington,VA 22202-4302,andto the Office of Managementand Budget,PaperworkReductionProject(0704-0188), Washington,DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1997 Contractor Report

4. TITLE AND SUBTITLE

Complexity of Kronecker Operations on Sparse Matrices with Appli-

cations to the Solution of Markov Models

6. AUTHOR(S)

Peter Buchholz, Gianfranco Ciardo, Susanna Donatelli, and Peter Kemper

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

5. FUNDING NUMBERS

C NAS1-97046

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 97-66

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-97-206274

ICASE Report No. 97-66

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

To be submitted to INFORMS Journal on Computing

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301)621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

We present a systematic discussion of algorithms to multiply a vector by a matrix expressed as the Kronecker product

of sparse matrices, extending previous work in a unified notational framework. Then, we use our results to define new

algorithms for the solution of large structured Markov models. In addition to a comprehensive overview of existing

approaches, we give new results with respect to: (1) managing ccrtaln types of state-dcpendent behavior without

incurring extra cost; (2) supporting both Jacobi-style and Gauss-Seidel-style methods by appropriate multiplication

algorithms; (3) speeding up algorithms that consider probability vectors of size equal to the '%ctual" state space

instead of the "potential" state space.

14. SUBJECT TERMS

Kronecker algebra, Markov chains, vector-matrix multiplication

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

_JSN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

29

16. PRICE CODE

A03
20. _ LIMITATION

OF ABSTRACT

_tandard Form 298(Rev. 2-89)
Prescribedby ANSI Std. Z39-18
298-102

thesis, Universit_it Dortmund, 1996.

[20] --, SupGSPN Version 1.0 - an analysis engine for superposed GSPNs, tech. rep., Universit_t Dort-

mund, 1997.

[21] --, Reachability analysis based on structured representations, in Application and Theory of Petri

Nets 1996, Lecture Notes in Computer Science 1091 (Proc. 17th Int. Conf. on Applications and

Theory of Petri Nets, Osaka, Japan), J. Billington and W. Reisig, eds., Springer-Verlag, June 1999,

pp. 269-288.

[22] B. LUBACHEVSKY AND D. MITRA, A chaotic asynchronous algorithm for computing the fixed point of

nonnegative matrices with unit spectral radius, J. ACM, 33 (1986), pp. 130 150.

[23] S. PISSANETZKY, Sparse Matrix Technology, Academic Press, 1984.

[24] B. PLATEAU, On the stochastic structure of parallelism and synchronisation models for distributed

algorithms, in Proc. 1985 ACM SIGMETRICS Conf. on Measurement and Modeling of Computer

Systems, Austin, TX, USA, May 1985, pp. 147-153.

[25] B. PLATEAU AND g. ATIF, Stochastic Automata Network for modeling parallel systems, IEEE Trans.

Softw. Eng., 17 (1991), pp. 1093-1108.

[26] W. J. STEWART, Introduction to the Numerical Solution of Markov Chains, Princeton University Press,

1994.

[27] W. J. STEWART AND A. GOYAL, Matrix methods in large dependability models, Tech. Rep. RC-11485,

IBM T.J. Watson Rcs. Center, Yorktown Heights, NY, Nov. 1985.

25

